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Abstract 

Background: COVID-19 highly caused contagious infections and massive deaths worldwide as 

well as unprecedentedly disrupting global economies and societies, and the urgent development 

of new antiviral medications are required. Medicinal herbs are promising resources for the 

discovery of prophylactic candidate against COVID-19. Considerable amounts of experimental 

efforts have been made on vaccines and direct-acting antiviral agents (DAAs), but neither of 

them was fast and fully developed.   

Purpose: This study examined the computational approaches that have played a significant role 

in drug discovery and development against COVID-19, and these computational methods and 

tools will be helpful for the discovery of lead compounds from phytochemicals and 

understanding the molecular mechanism of action of TCM in the prevention and control of the 

other diseases.   

Methods: A search conducting in scientific databases (PubMed, Science Direct, ResearchGate, 

Google Scholar, and Web of Science) found a total of 2172 articles, which were retrieved via 

web interface of the following websites. After applying some inclusion and exclusion criteria and 

full-text screening, only 299 articles were collected as eligible articles. 

Results: In this review, we highlight three main categories of computational approaches 

including structure-based, knowledge-mining (artificial intelligence) and network-based 

approaches. The most commonly used database, molecular docking tool, and MD simulation 

software include TCMIP, AutoDock Vina, and GROMACS respectively. Network-based 

approaches were mainly provided to help readers understanding the complex mechanisms of 

multiple TCM ingredients, targets, diseases, and networks. 

Conclusion: Computational approaches have been broadly applied to the research of 

phytochemicals and TCM against COVID-19, and  played a significant role in drug discovery 

and development in terms of the financial and time saving.  

Keywords: Computational approaches; Traditional Chinese Medicine (TCM); Structure-based 

approach; Knowledge-mining; Network-based approach 
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Introduction 

COVID-19, the disease caused by the novel coronavirus SARS-CoV-2, caused a global 

emergency shortly since the late December 2019 (Chitsike and Duerksen-Hughes, 2021; Hu et 

al., 2021a). As vaccines for COVID-19 have been developed and tested for their efficacy and 

long-term adverse effects, the latest emerging COVID-19 variant named Omicron may cause the 

existing vaccines to be less effective due to its heavily mutated species. Moreover, there is no 

guaranteed for all vaccinated people to be totally protected, so both direct-acting antivirals 

(DAAs) and vaccines are developed to restrain the spreading of COVID-19. The provided 

outcomes have not reached satisfaction, and the urgent development of new antiviral medications 

are required. 

Computational approaches are effective strategies in the process of drug discovery and 

development, and computational methods and tools have grown exponentially in recent decades 

with the dramatic increase in the availability of computational resources (Tiwari and Singh, 

2022).  Much of the research effort has focused on the drug discovery against COVID-19 by 

exclusively computational or computer-aided experimental method, and a commercially 

available drug named PF-07321332 has been designed and optimized as an orally bioavailable 

SARS-CoV-2 main protease inhibitor (Owen Dafydd et al., 2021). Medicinal herbs are 

promising resources for drug discovery because of its favorable efficacy and acceptable toxicity, 

which can become prophylactic candidate against COVID-19 (Huang et al., 2020; Li et al., 

2022a). Recent studies showed that some phytochemicals have been developed as the potential 

anti-COVID-19 drugs by the computer-aided experimental method (Bharadwaj et al., 2021; 

Gopinath et al., 2020; Huang et al., 2020; Pamuru et al., 2020; Verma et al., 2020).  

Traditional Chinese medicine (TCM) has a long history for over thousands of years of 

accumulated clinical evidence and pharmacological studies (Gao et al., 2019), and exerts an 

important role in the prevention and treatment of the COVID-19 caused by SARS-CoV-2 (Lyu et 

al., 2021; Yang et al., 2020; Zhao et al., 2021d). TCM preparations include extracts from a single 

source of plants, animals, minerals and their preparations and preparation of TCM formulas. 

Multicomponent therapeutic formulae are the most important and are most commonly used in 

TCM for clinical applications. However, the formulae sometimes are very complex which makes 

it mandatory to use systematic research supported by computational methods to elucidate their 

mechanisms of action. 

In the manuscript, the computational approaches employed in the research of TCM 

against COVID-19 have been reviewed, and scientific literature with valid experiment and 

comprehensive studies combining computational investigation will be included in this review 

until 31
st
 January 2022. The general procedure of computational approaches had been 

summarized in the Figure 1.  

Materials and methods 

A systematic review has been prepared according to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) checklist and followed the inclusion of 

relevant studies. The literature search was conducted in the databases: PubMed, Science Direct, 
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ResearchGate, Google Scholar, and Web of Science for published articles. The keyword 

„COVID-19‟ was paired with „Traditional Chinese medicine‟, „traditional herb‟, „natural 

products‟, „active components‟, „in silico, „computational approaches‟, „ADMET‟, „structure-

based‟, „molecular docking‟, „molecular dynamic simulation‟, „ligand-based‟, „QSAR‟, 

„pharmacophore‟, „generative neural network model‟, „chemical cartography‟, „chemography 

approaches‟, „knowledge mining‟, „artificial intelligence‟, „machine learning methods‟, „deep 

learning approaches‟, „computer-aided drug design‟, „system pharmacology‟, and „network 

pharmacology‟ to obtain published records until 31
st
 January 2022. Boolean search strategies 

were used on these keywords without any language restrictions. Data inclusion criteria included 

(a) the focus of this study is on COVID-19 pandemic disease, and (b) the articles about natural 

products and/or TCM derivatives conducting in silico with experimental validation were 

included. Exclusion criteria included (a) any data duplication, titles, or content that did not meet 

the inclusion criteria, (b) reports on antiviral activities of natural products or their derivatives 

against other diseases, and (c) studies that involved synthetically conventional chemicals, which 

were not originated from natural sources. 

A search conducted in scientific databases (PubMed, Science Direct, ResearchGate, 

Google Scholar, and Web of Science) found a total of 2172 articles, which were retrieved via 

web interface of the following websites. After applying some inclusion and exclusion criteria and 

full-text screening, only 299 articles were collected as eligible articles and displayed in pie charts. 

All of the extracted information was thoroughly checked by all authors to reach an agreement.  

Databases and research resources that support research on TCM against COVID-19 

Over the past decades, TCM has promoted its system biology and various data integration 

in order to modernize and internationalize its concept (Xu et al., 2021a). Several databases have 

been developed, such as TCMIP (www.tcmip.cn), BATMAN-TCM 

(http://bionet.ncpsb.org.cn/batman-tcm/), ETCM (www.tcmip.cn/ETCM), SymMap 

(www.symmap.org), TCMID (http://bidd.group/TCMID/), TCMATCOV 

(http://tcmatcov.bbtcml.com/), and TCM database@Taiwan (tcm.cmu.edu.tw), etc. Keywords 

“Traditional Chinese Medicine” and “COVID-19” were paired with each database and found a 

total of 105 cited databases. These data were screened, and pie chart in Figure 2 was illustrated. 

The most popular database is TCMSP, which constitutes 44% among all that support research on 

TCM against COVID-19. TCMIP (11%), BATMAN-TCM (9%), ETCM (9%), SymMap (7%), 

TCMID (6%), TCMATCOV (5%), TCM database@Taiwan (5%), and other databases (4%) are 

also applied in the research of TCM against COVID-19. 

The results shows that TCMIP (Integrative pharmacology-based traditional Chinese 

medicine) is the most popular database, which was introduced to solve the aforementioned issues 

and focus on chemical profiles as well as ADME/PK at first (Xu et al., 2021a).  

Structure-based approaches  

Structure-based drug discovery (SBDD) methods have been used in numerous 

pharmaceutical industries and by medicinal chemists to assess binding energy between protein 

and ligand interactions as well as conformational changes of the receptor during in complex with 

                  



5 

 

a ligand (Kalyaanamoorthy and Chen, 2011). Structure-based approaches usually includes the 

target structure-based approach and ligand structure-based approach, which will be discussed in 

the next section of this review.  

Target structure-based approach  

Target structure-based approach involves target protein structure analysis, molecular 

docking, and molecular dynamics (MD) simulations. These help researchers to understand 

disease at a molecular level, specifically identify lead molecules and their optimization in a fast 

pace (Lionta et al., 2014). Essential steps of SARS-CoV-2 replication cycle have been 

investigated mainly on S protein, ACE2, TMPRSS2, Mpro, PLpro, RdRp, and other non-

structural proteins as described in the previous viral targeted discovery section. The majority of 

virtual docking programs and databases are used to repurpose potential approved, preclinical, 

experimental drugs, and natural products. The commonly used docking tools are AutoDock, 

AutoDock Vina, GOLD, CDOCKER, FlexX, Surflex, G, DOCK6, and SwissDock (Gurung et al., 

2021). Following the results of molecular docking, free energy perturbations and binding models 

are intensively determined using MD software packages including GROMACS, AMBER, 

CHARM, NAMD, Desmond, Tinker, LAMMPS, and DL_POLY (Gurung et al., 2021). The 

main objectives of using these tools are to find effective therapeutics for those who are seriously 

infected by SARS-CoV-2. Target structure-based approach will be further discussed. 

Potential targets against COVID-19 

SARS-CoV-2 genome consists of nearly 30,000 RNA bases and 29 encoded proteins 

functioning as host invasion and vital replication. Therefore, successfully inhibiting these target 

proteins can result in therapeutic actions. The genetic variability of 58 coronaviruses have been 

assessed in order to determine broad spectrum antivirals (Yazdani et al., 2021). A public web 

portal named SARS-CoV-2 pocketome was established for displaying 3D structures of 15 

SARS-CoV-2 proteins, and 19 putative drug binding sites were mapped on these structures. 

Scientists can analyze their binding sites of interest for future SBDD efforts. CADD targeting 

key coronaviral proteins will be summarized with tools using computational modeling. 

Three main functional categories of viral proteins include attachment and penetration into 

host cells, viral replication and transcription, and suppression of the host immune response. To 

better understand the replicative and host invasive mechanisms of SARS-CoV-2, structure-based 

drug discovery plays a significant role in rapid determination of many viral protein structures. 

Several highlighted in silico studies covers major targets against COVID-19, which was 

illustrated in Figure 3.  

Docking tools 

Molecular docking is popular for identification of potential drug candidates or ingredients 

in TCM prescriptions. Keywords “Traditional Chinese Medicine” and “COVID-19” were paired 

and found a total number of 114 cited docking tools listed in Table 1. These data were screened, 

and pie chart in Figure 4 was illustrated. The most popular docking tool is AutoDock Vina, 

which constitutes 38% among all that support research on TCM against COVID-19. GLIDE 
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(18%), AutoDock (15%), MOE (10%), SwissDock (5%), GOLD (2%), COVID-19 Docking 

Server (2%), and other docking tools (10%) are also applied in the research of TCM against 

COVID-19. 

The results shows that AutoDock Vina is the most popular docking tool in the target 

structure-based approach.  AutoDock Vina is an open-source molecular docking program, which 

can virtually pre-calculate grid maps without any requirements on choosing atom types because 

it calculates the grids internally and instantly for the atom types that are needed (Trott and Olson, 

2010).  

Molecular dynamics simulations 

MD simulations can obtain comprehensive information about drug target dynamics and 

potential ligand interactions. These are several most commonly used softwares for MD 

calculations: AMBER (Case et al., 2005; Song et al., 2019),  YASARA (Land and Humble, 

2018),  GROMACS (Groningen MAchine for Chemical Simulation) (Selvaraj et al., 2021b),  

VMD (Visual Molecular Dynamics) (Umesh et al., 2021), CHARMM (Chemistry at Harvard 

molecular mechanics) (Brooks et al., 2009), NAMD (Gyebi et al., 2020; Lee et al., 2016),  

Desmond
 
(Patel et al., 2021), and Tinker (Sawant et al., 2021). Keywords “Traditional Chinese 

Medicine” and “COVID-19” were paired and found a total number of 80 cited MD simulation 

software. These data were screened, and pie chart in Figure 5 was illustrated. The most popular 

MD simulation software is GROMACS, which constitutes 22% among all that support research 

on TCM against COVID-19. Desmond (20%), AMBER (16%), CHARMM (14%), YASARA 

(9%), VMD (6%), NAMD (4%), Tinker (1%), and other MD simulation software (8%) are also 

applied in the research of TCM against COVID-19. 

The results shows that GROMACS is the most popular MD software in supporting with 

the research of TCM against COVID-19 facilitate the potential drug discovery and target 

identification 

Examples of active compounds derived from TCM by structure-based approaches 

We briefly review some hit natural products that have been further investigated for 

experimental validation using structure-based approaches. Several natural compounds have been 

evaluated for their activity against SARS-CoV-2 S protein, 3CL
pro

 and PL
pro

 in virus-infected 

cells as shown in Table 3, 4, and 5. 

   ACE2 (S protein) inhibitors: 

Viral attachment and entry are of particular interest therapeutic targets in the life cycle of 

viruses. SARS-CoV-2 use the receptor-binding domain (RBD) of its glycosylated S protein to 

bind to human angiotensin converting enzyme 2 (hACE2) and initiate membrane fusion and 

virus entry. Hence, the inhibitor of the RBD–hACE2 protein–protein interaction (PPI) can 

disrupt infection efficiency (Bojadzic et al., 2021).  Some natural compounds isolated from 

natural extracts are listed in Table 3 as the ACE2 (S protein) protein inhibitors.  
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Here is a detailed example by structure-based approaches: Elebeedy et al. reported four 

major active compounds against SARS-CoV-2 S protein, which are tanshinone IIA and 

salvianolic acid B from TCM herb Salvia miltiorrhiza and carnosic acid and rosmarinic acid 

from Rosmarinus officinaliss (Elebeedy et al., 2021). Molecular docking and MD simulation 

studies have been performed on all four compounds and showed promising anti-SARS-CoV-2 

binding affinities. Therefore, to validate the computational model, the activity of these 

compounds was further conducted in vitro using plaque reduction assay and MTT assay on Vero 

E6 cells for IC50 and CC50 values respectively. The promising activity of Tanshinone IIA, 

carnosic acid, rosmarinic acid, and salvianolic acid B ranged as following from lowest to highest 

with IC50 of 4.08, 15.37, 25.47, and 58.29 ng/μL. All compounds demonstrated no significant 

cytotoxic effects on Vero E6 cells.  

     Chymotrypsin-like (3CL
pro

) inhibitors: 

SARS-CoV-2 3CL
pro 

(M
pro

) is well known to be ideal target for treating COVID-19, and 

several natural products from different sources including TCM herbs and formulas have potential 

antiviral activities on the main protease. Some natural compounds isolated from natural extracts 

are listed in Table 4 as the M
pro

 inhibitors. 

One study has screened 1920 natural products and identified two anti-SARS-CoV-2 

compounds, namely ginkgolic acid and anacardic acid (Chen et al., 2021c). Both demonstrated 

similar IC50 values of 1.79 and 2.07 μM respectively. No significant cytotoxicity effects were 

observed at 20 µM for ginkgolic acid and anacardic acid. Simultaneously, these two hits can 

block SARS-CoV-2 replication at non-toxic concentration of 15 µM in a viral plaque reduction 

assay. Epigallocatechin gallate (EGCG), an active ingredient in TCM commonly known as green 

tea was a promising inhibitor of SARS-CoV-2 M
pro

 (Du et al., 2021).  

    Papain-like protease (PL
pro

) inhibitors: 

Papain-like protease (the phosphatase domain of nsp3) is believed to interfere with the 

immune response by acting as a ADP-ribose phosphatase to remove ADP-ribose from host 

proteins and RNAs, and then is the therapeutic target against COVID-19(Freitas et al., 2020; 

Klemm et al., 2020; Shin et al., 2020). Some natural compounds isolated from natural extracts 

are listed in Table 5 as the PL
pro

 inhibitors. 

One study further investigated numerous natural PL
pro

 inhibitors from the phytochemical 

library named national compound library of traditional Chinese medicines (NCLTCMs), which 

contained more than 9000 TCM compound derivatives and proved with valid experiment of 

fluorogenic enzymatic and Pro-ISG15 cleavage assays (Li et al., 2022b). The total of nine natural 

hits, namely amentoflavone, ginkgetin, isoginkgetin, sciadopitysin, morelloflavone, 

podocarpusglavone, hinokiflavone, cryptomerin B, and 4'-O-methylochnaflavone demonstrated 

effective PL
pro

 inhibitors with anti-proteolytic activity and IC50 ranging from 9.5 to 43.2 μM in 

the enzymatic assay. Moreover, this study was reported for the first time that 4'-O-

methylochnaflavone exhibited promising inhibitory effects on both proteolytic and deISGylation 

activities of SARS-CoV-2 PL
pro

. This natural product remarkably suppressed PL
pro

-induced 

deISGylation at decreased concentration of 2.5 μM with 60.7% inhibition rates. Pitsillou et al. 
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performed enzymatic inhibition assay of natural hits namely hypericin, rutin and cyanidin-3-O-

glucoside, which are small molecules SARS-CoV-2 PL
pro

 inhibitors at 100 micromolar range 

(Pitsillou et al., 2021). These natural compounds were screened from OliveNet
™

 library, 

subjected to molecular docking using the selective PL
pro

 inhibitor, GRL-0617, as control, and 

further implemented MD simulation at 100 μs prior to in vitro evaluation. In another study, 

cryptotanshinone and tanshinone I, two active components in TCM herb named Salvia 

miltiorrhiza, were identified as top PL
pro

 inhibitors with IC50 = 5.63 and 2.21 μmol/L 

respectively (Zhao et al., 2021b). Both compounds were performed using qRT-PCR analysis, 

immunofluorescence microscopy, plaque-reduction, and cytotoxicity assays using a clinical 

isolate of SARS-CoV-2 (nCoV-2019BetaCoV/Wuhan/ WIV04/2019) infected Vero E6 cells. 

EC50 was of 0.70 and 2.26 μmol/L for cryptotanshinone and tanshinone I respectively for a 

plaque-reduction assay. This means that the penetration of viral cellular membrane by these two 

hits created access to the PLpro target. 

Ligand structure-based approaches 

In this section, the application of traditional ligand-based methods and knowledge mining 

approaches will be discussed. This can exploit and lead to the experimental drug discovery for 

COVID-19. We highlight the utility of some recent innovative techniques such as Generative 

Topographic Mapping (GTM) and deep learning (DL) for the discovery of novel DAA agents. 

Chemical cartography or chemography approaches 

Chemical cartography or chemography approaches, allows visual analysis of an ensemble 

of chemical structures encoding vectors of molecular descriptors, which can project extremely 

complex data onto a 2D chemical space map (Gaspar et al., 2015). This method utilizes the 

neighborhood behavior principle, which suggests that close-proximity compounds have similar 

chemical properties, so chemical space maps can relate to structural-activity relationship (SAR) 

studies. Joshi et al. conceptualized the key druggable parameters of chemical space and analyzed 

molecular similarity on already identified phytochemicals in COVID-19 (Joshi et al., 2021). 

Chemical space exploration using key parameters including MW, TPSA, number of rotational 

bonds (nROTB), hydrogen bond donors (nHBDon) and acceptors (nHBAcc), and partition 

coefficient (AlogP) using Platform for Unified Molecular Analysis (PUMA) online server 

(Gonzalez-Medina and Medina-Franco, 2017). These parameters were used to compare potential 

hit compounds from in silico-based studies from natural sources against Covid-19, FDA 

approved drugs from natural products, and with FDA approved anti-infectives. A strong 

correlation of identified phytochemicals was observed and was further subjected to molecular 

docking and MD simulation. 

Generative Topographic Mapping (GTM) is one of the most commonly used chemical 

space mapping (chemography) methods. It is a non-linear grid-based method, which can be used 

for visualizing data, modeling structural activity, and evaluating database comparison. The GTM 

algorithm has 2D smooth surface called manifold fitted into a high-dimensional descriptor space 

and subsequently projected molecules on 2D latent space superposed with a square grid of nodes 

(Lin et al., 2020a). The results of biological tests can be involved with a map through activity or 
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classification landscapes, which can visualize the specific sites surrounded by molecules with a 

provided activity along with proximity-based classification of untested compounds (Bocci et al., 

2020). In the past, there was no available experimental data for drug discovery against SARS-

CoV-2, so information was mainly associated with related pathogens. Moreover, GTM was 

implemented for visualizing the interactive chemical space of natural product databases 

including ChemGPS-NP, COCONUT, D-Peptide Builder, and an intuitive online tool NP 

Navigator (Medina-Franco et al., 2021; Sorokina et al., 2021; Zabolotna et al., 2021). These are 

open-source and easily accessible tools and websites to calculate molecular descriptors and 

interpret chemical space notion of small molecules derived from natural product. Zabolotna et al. 

introduced the Natural Product Universal map (NP-Umap) and obtained density landscape of 

natural products from COCONUT to support the investigation of natural product chemical space 

(Zabolotna et al., 2021). The ISIDA descriptors have also been used to explore the chemical 

space of natural product. MinHashed Atom Pair fingerprint with diameter of four bonds (MAP4) 

was reported as a molecular fingerprint with good performance in similarity searching and 

chemical space visualization for different molecular sizes, which were analyzed in Natural 

Products Atlas (NPAtlas) containing microbial origins (Capecchi et al., 2020; Capecchi and 

Reymond, 2020). These could be great ideas for conducting experimental research using natural 

product databases, molecular descriptors and fingerprints, chemical space navigation of natural 

product against COVID-19.  

Generative neural network models 

Different from virtual screening of available chemical libraries, constructing de novo 

molecule provides access to a virtually infinite chemical space and offers innovative molecular 

architecture with desired properties (Yang et al., 2019). Recently, the use of generative artificial 

intelligence to develop drug-like chemical compounds with desirable pharmacological effects 

supports drug discovery of DAA agents (Schneider and Clark, 2019). Recent generative 

approaches usually construct on deep neural networks (DNNs), which aims to model the 

underlying distribution of a given set of molecules and by sampling from the modelled 

distribution to construct novel chemical entities (Foster, 2019). The application of recurrent 

neural networks (RNNs) with long short-term memory (LSTM), variational autoencoders, 

generative adversarial networks (GANs), graph neural networks (GNNs), and other network 

architectures have been studied (Grisoni and Schneider, 2019; Lin et al., 2020b; Pogány et al., 

2018; Sattarov et al., 2019). These approaches are trained using ML algorithms to understand the 

meaning of text and language analytics. For the purpose of molecular design, the training 

molecules are represented in form of string notations as simplified molecular-input line-entry 

systems (SMILES strings). This generative DL model is important because internal 

representations of SMILES are automatically derived without relying on human-engineered 

molecular descriptors that require one‟s prediction of physicochemical properties. The generative 

model captures the syntax corresponding to valid training molecules and renders new SMILES-

encoded molecules of interest, which can also lead to discovery of novel compounds with 

desired bioactivities (Merk et al., 2018). Bung et al. employed deep neural network-based 

generative and predictive models for de novo design of small molecules with SARS-CoV-2 

3CL
pro

 inhibitory effects (Bung et al., 2021). Transfer learning followed by reinforcement 
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learning aided the design of protease-specific inhibitors with optimized new chemical entities 

(NCEs) properties. The SymMap database of TCM was used to compare the potent NCEs by 

generative model that potentially targeted 3CL
pro

 (Wu et al., 2019). 33 NCEs were selected for 

the identification of pharmacokinetic and toxicity properties using SwissADME, ToxTree, and 

pkCSM (Bung et al., 2021). Two NCEs shared similar results of Tanimoto coefficient of 0.80 to 

the natural product named aurantiamide. This phytochemical was extracted from Baphicacanthus 

cusia, the TCM herb treating cold, fever, and influenza, and possessed anti-viral properties. The 

generalized approach was used to rapidly accelerate drug discovery process and tested against 

SARS-CoV-2 3CL
pro

. 

Another study has developed deep learning model using convolutional neural network 

(CNN) framework for predicting compounds with 3CL
pro

 inhibitory activity (Kumari and 

Subbarao, 2021). 423 unique chemical structures including 80 active and 343 inactive 

compounds as chemical descriptors were trained into the CNN model. Classification ML 

approaches including Random Forest, naïve Bayes, decision tree, and support vector machine 

were also implemented to compare with the CNN model. The results of the test set exhibited an 

accuracy, sensitivity, specificity, precision, recall, F-measure, and ROC of 0.86, 0.45, 0.96, 0.73, 

0.45, 0.55, and 0.71 respectively. The CNN architecture screened 10 hit molecules from 

phytochemical compounds, 59 hits from NCI divest IV and 14,025 ZINC natural product 

database as anti-COVID-19 agents.  

Examples of active compounds derived from TCM by ligand-based approaches 

The examples of active compounds from TCM by structure-based approaches have been 

previously discussed. Only few studies have been investigated on main TCM components acting 

against COVID-19 using ligand-based approaches, which will be reviewed in this section. 

Rahman et al. reported a ligand-based pharmacophore approach using the Molecular Operating 

Environment (MOE) software (Rahman et al., 2020). Approximately 30,927 compounds from 

NPASS were screened for the pharmacophore features of standard serine protease inhibitor 

camostate mesylate, which is a trypsin-like protease inhibitor. Subsequently, 2140 compounds 

were identified from the ligand-based compound screening approach and further subjected to 

molecular docking against TMPRSS2 to determine potent inhibitors of this target. The authors 

selected 10 pharmacophoric features including anionic and cationic atoms, H-Bond donor and 

acceptor, aromatic center, Pi ring center, and a hydrophobic center. Following physicochemical 

and ADMET prediction, NPC306344 was the hit compound for TMPRSS2. Further investigation 

on experimental and animal studies is required to develop this anti-COVID-19 drug. Gaudêncio 

& Pereira proposed five marine natural products, such as Reaxys ID: 7450892, 19384758, 

26845562, 10714788, and 10720065 as most promising SARS-CoV-2 M
pro

 inhibitors using 

quantitative structure-activity relationship (QSAR) classification modeling (Gaudêncio and 

Pereira, 2020). This CADD ligand-based study consists of two extensive sets of descriptors 

including six different types of fingerprints with different sizes and 1D&2D descriptors. These 

molecular descriptors and fingerprints were calculated using PaDEL-Descriptor version 2.21, 

available on http://www.yapcwsoft.com/dd/padeldescriptor/. Random Forest (RF) machine 

learning technique was used for constructing classification modeling to evaluate performance of 
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SARS-CoV-2 activity. The authors highlighted three selected models, which are MACCS model, 

ExtCDK model, and 1D&2D descriptors. The best MACCS model built with sets of fragment 

fingerprints include MACCS, Sub, Sub C, and PubChem, and the best ExtCDK model built with 

sets of circular fingerprints include CDK and CDKExt. For 1D&2D descriptors, Q and MCC 

parameters were selected. The best model for each training set of ExtCDK fingerprints and 

1D&2D descriptors were obtained by using the RF algorithm of the selected 150 fingerprints and 

descriptors respectively. MACCS model was excluded because descriptors comprise only 166 

fingerprints. Probability of being class A (Prob_A) can be used as an additional parameter 

assigned by the RF algorithm and a predicting criterion (≥0.5). JChem Standardizer tool version 

5.7.13.0 was then used to standardize the molecular structures of all data sets by normalizing 

tautometic and mesomeric groups and removing small disconnected fragments. The pkCSM 

software was used to predict fifteen selected marine natural products by QSAR model, molecular 

docking, and ADMET properties. Finally, the top five aforementioned marine natural products 

were achieved and could be further investigated experimentally. Ghosh et al. reported the 

development of multiple classification QSAR models including several Monte Carlo optimized-

based and structural and physicochemical interpretation (SPCI) analysis with a diverse dataset of 

88 compounds with SARS-CoV-2 M
pro

 inhibitory properties (Ghosh et al., 2021). In SPCI 

analysis study, four machine learning approaches including Gradient boosting classification 

(GBC), Random Forest (RF), Support Vector Machine (SVM), and k-nearest neighbor (kNN) are 

used to perform diverse classification-based QSAR models for identifying and predicting 

different fragments that contribute for M
pro

 inhibition. These models were further assessed for 

balanced accuracy, sensitivity, and specificity (Polishchuk et al., 2016). The results of SPCI 

analysis suggested heterocyclic scaffolds including diazole, furan, and pyridine have a positive 

contribution, while thiophen, thiazole, and pyrimidine seem to have negative contribution to M
pro

 

inhibition (Ghosh et al., 2021). Furthermore, Monte Carlo optimization-based QSAR was 

implemented to screen some natural product hits from recent publications. SMILES-based 

descriptors, Graph-based descriptors, and Hybrid descriptors are employed in this study. The 

statistical characteristics of twenty-one different models from three different splits were obtained 

from Monte Carlo optimization method, and the model M21 (SMILES and HSG with 
1
ECk) 

from split-3 was applied for the best model screening. Subsequently, 13 active molecules from 

natural sources were found as the most potent coronaviral M
pro

 inhibitors. These compounds 

consist of one lignan, eleven flavonoids, and one pentacyclic triterpenoid. This approach plays a 

significant role on fragment investigation and QSAR based active compound screening against 

SARS-CoV-2 M
pro

 enzyme. 

Knowledge mining tools 

The COVID-19 pandemic results in urgent establishments of open science and FAIR 

(Findable, Accessible, Interpretable, Reusable) data initiatives to help researchers, institutions, 

publishers, companies and regulators better understanding the disease and search for effective 

treatment as soon as possible (Wilkinson et al., 2016). For instance, the Natural Products Atlas, a 

microbial natural product database with over 20,000 compounds containing structural data 

references, compound names, source organisms, isolation references, total syntheses, and 

structural reassignment, has been developed using FAIR principles as a community-supported 
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resource for known structural characterizations of microorganisms from natural product (Van 

Santen et al., 2019). Various structured and unstructured COVID-19 data sources have been 

made publicly available. This highlights the use of accelerated tools for COVID-19 drug 

discovery from knowledge graph approaches and AI, which will be discussed with examples in 

the following section (Bullock et al., 2020).  

 Knowledge graph (KG) is a collection of integrated knowledge resources or correlation 

between library and data descriptions in a form of mapping graph (LiuQiao and DuanHong, 

2016). KG implemented visualization AI technology to illustrate, construct, connect knowledge 

resources, and display relationships between these carriers. In TCM field, the use of KG analysis 

could explain complex relationships between therapeutics and prevention of diseases as well as 

other research fields, which could be an alternative for studying the information on TCM. 

Several studies have applied KG to the TCM diagnostic and medical treatment (Wang, 2020; Yu 

et al., 2017; Zhao et al., 2020a). However, in this review, the TCM prescription using COVID-19 

KG will be summarized in detail.  

FP-Growth algorithm, a modified version of Apriori algorithm, has been developed for 

analyzing TCM data correlation between natural active constituents in 41 TCM prescriptions 

with 8 characteristics of medical properties, 10 kinds of medical tastes, and 10 kinds of meridian 

tropism (Yan et al., 2020). In this study, Neo4j, a high-performance NoSQL graph database, as 

well as various programming languages, for instances Python, Java, GO, R, etc. were also 

provided in order to construct COVID-19 KG. Three populations including medical observation, 

mild general, and COVID-19 infected patients were included in the study with equally 

distributed number ratio of 1:1:1 to enhance reliable association analysis results. To be more 

specific, TCM prescriptions for COVID-19 infected patients will be summarized in our review. 

There are two major modules, which comprises of FP-tree construction by FP-Growth algorithm 

and the use of Cypher language analysis on the algorithm to map the graph of COVID-19 

prescription. The initial step was to establish relationships between tastes, properties, and 

population and make correlation analysis to produce the graph of “applicable population – 

properties, tastes, and meridian tropism of Chinese medicinal herbs” (Yan et al., 2020). The 

results demonstrated that TCM herbs with neutral property, acrid taste, and spleen-invigorating 

meridians were commonly used in the prescriptions to treat COVID-19 infected patients. The 

highest proportions of each TCM characteristics type of herbs in COVID-19 prescriptions 

statistically contributed 39% of warm-natured properties, 41% of acrid tastes, and 24% of 

stomach meridian tropism. Subsequently, the use of operation instructions, such as MATCH and 

WHERE in Cypher suggested that core TCM herbs including Radix Glycyrrhizae (Gan Cao), 

Herba Asari (Xi Xin), Rhizoma Atractylodis (Cang Zhu), and etc. were recommended as well as 

TCM prescriptions including phlegm-resolving, wind-dispelling, cough/pain/exterior syndrome-

relieving, spleen-invigorating, and digestion-aiding medicines for the COVID-19 infected 

patients. Further investigations on improving KG efficacy are required. For examples, the KG of 

COVID-19 prescriptions reported here only supported a small number of data, so FP_G 

algorithm should be applied to enhance FP_tree construction in FP-Growth algorithm for a larger 

volume of prescription data expansion. The use of knowledge graph approaches for COVID-19 
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TCM prescriptions could be applied in relevant research scholars and increased the reliability of 

TCM research content. 

Network-based approaches 

Network-based approaches is very important for network pharmacology, system 

pharmacology and integrated pharmacology research on TCM against COVID-19.  

Network pharmacology 

Network pharmacology comprehensively integrates multitarget drugs and compound-

disease pathways in order to comprehend complex biological systems, drugs, and diseases in a 

network point of view. This results in shifting drug discovery concepts of network theory and 

systems biology from the concept of one gene, target, and disease to the novel paradigm of 

multitargeted mechanisms in treatment of complicated diseases, especially COVID-19. 

Zhang et al. conducted a network pharmacological methodology to explore significant 

biological mechanisms of Lianhua Qingwen Capsule (LHQWC), which is another TCM formula 

used for treating respiratory diseases as well as COVID-19 (Zhang et al., 2021a). 263 ingredients 

of 13 herbs, including Fructus Forsythiae, Flos Lonicerae Japonicae, Herba Ephedrae, Almond, 

Radix Isatidis, Fortunes Boss fern Rhizome, Herba Houttuyniae, Herba Pogostemonis, Rheum 

palmatum, and Glycyrrhiza uralensis Fisch, were retrieved from TCMSP database while 

Rhodiola rosea, Mentha haplocalyx Briq and Gypsum Fibrosum were retrieved from BATMAN-

TCM and TCMID databases (Liu et al., 2016; Xue et al., 2012). 226 compounds excluding 

duplicated portions from these herbs were selected for further study. To standardize the protein 

name, UniProtKB was utilized to acquire the official symbols (Consortium, 2015). The gene 

intersection between active ingredients and COVID-19 was illustrated and visualized using a 

Venn diagram (Heberle et al., 2015). GeneCards database was used to obtain COVID-19 human 

related genes (Rebhan et al., 1997), and the STRING database was employed to predict PPI 

interaction data (Mering et al., 2003). 643 therapeutic genes were collected from GeneCards for 

COVID-19 and 49 intersected genes were generated. These ingredient-disease co-target genes 

were further imported into STRING to construct PPI. GO and KEGG pathway enrichment were 

further carried out using R package to determine biological processes and molecular interactions 

associated with top 20 selected common genes (Kanehisa and Goto, 2000). Ingredient–target 

network and ingredient–disease PPI networks were analyzed and constructed using Cytoscape 

software (Shannon et al., 2003). The ingredient-target network contains 153 nodes (49 targets 

and 104 compounds) and 299 edges, which represent a biological relationship between two 

nodes. LHQW-C may exert synergistic pharmacological effects on COVID-19 as suggested by 

the degree (number of links to nodes) of compounds. For instance, quercetin (degree 38), luteolin 

(degree 17), wogonin (degree 12), and kaempferol (degree 11) exhibited multiple targets in 

network regulation. On the other hand, the result revealed PPI network consisted of 46 nodes and 

331 edges. Nodes with an average value of degree ≥27, node betweenness ≥0.0009993, and 

closeness ≥0.618 suggested that the target network of LHQW-C plays significant roles on IL-6, 

TNF, MAPK1, which were associated with inflammatory responses, oxidative stress reactions, 

and other biological processes. Finally, the potential mechanism of LHQW-C using an 
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integrating network pharmacology method suggested that some anti-inflammatory ingredients 

may inhibit viral replication, suppress cytokine storm, and protect the pulmonary alveolar-

capillary barrier in patients with serious COVID-19 illness.  

Similarly, Li et al. reported the antiviral and anti-inflammatory effects of Maxing Shigan 

decoction (MXSGD), the key formula for treating pulmonary diseases, using multiple open-

source TCM databases, network pharmacology, PPI construction, as well as biological 

enrichment analysis (Li et al., 2021c). Four TCM herbs in MXSGD formula consist of E. sinica, 

S. armeniacae amarum, G. Fibrosum, and G. uralensis have proved to be effective against 

COVID-19, and Lianhua Qingwen Capsule, Qingfei Paidu decoction, Huashi Baidu formula, and 

Xuanfei Baidu granule, were all formulated based on MXSGD. Ye et al. reported the ingredients 

of Toujie Quwen Granules were proved to have therapeutic effects on COVID-19 via regulating 

viral infection, immune and inflammatory related targets and pathways using network 

pharmacology, molecular docking, and surface plasmon resonance technology (SPR) (Ye et al., 

2021). The results of SPR experiments revealed the combination of quercetin and isoquercitrin 

preferably bound to SARS-CoV-2 S protein while astragaloside IV and rutin selectively bound to 

ACE-2. He et al. identified the therapeutic effect of Xuebijing injection on COVID-19-induced 

cardiac dysfunction using bioinformatics analysis (He et al., 2021). Xuebijing injection indicated 

oxidative stress inhibition, atherosclerotic plaque prevention, inflammatory repression and 

apoptosis by targeting 7 central hub genes including CCL2, CXCL8, FOS, IFNB1, IL-1A, IL-1B, 

SERPINE1 that have protective mechanism on COVID-19-induced cardiac dysfunction. Lin et al. 

systematically and comprehensively analyzed the active ingredients, targets, and possible 

mechanisms of Yinqiao powder for treating COVID-19 using drug-ingredient-gene and PPI 

network construction as well as GO and KEGG pathway analysis (Lin et al., 2021). The active 

ingredients of Yinqiao powder, such as hesperetin, eriodictyol, luteolin, quercetin, and 

naringenin have antagonistic effect on the inflammatory storm caused by COVID-19 and may be 

associated with the regulation of IL-6, MAPK3, TNF, and TP53 targets using network 

pharmacology. Tao et al. proposed the therapeutic mechanism of Shufeng Jiedu Capsule (SFJDC) 

against SARS-CoV-2 pneumonia using an integrated systemic study of ADME assessment, 

target fishing, network construction, and functional bioinformatics analyses to understand 

potential immunomodulatory and anti-inflammatory mechanisms (Tao et al., 2020). Many TCM 

prescriptions have been investigated using network pharmacology methods due to complicated 

multiple TCM ingredients, targets, diseases, and mechanisms. Next, discussion part will be 

mentioned. 

System pharmacology 

The combination of herbal medicine formula contains over thousands of chemical 

compounds, and only some parts of them show favorable pharmacokinetics along with potential 

biological effects (Li et al., 2012). Moreover, possible therapeutic effects of herbal products 

might result from cooperate actions of the herbal ingredients. This concept screens out the 

conventional analytical chemistry and pharmacology technologies which attempt to isolate and 

identify possible pharmacological effects of chemical constituents. Also, the chemical 

components in multiple TCM herbs or even in one herb are too complex to identify because they 
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produce various biological targets involving in various pathogenesis. Due to these addressed 

issues, systems pharmacology has been applied in a biological complex system for screening 

drug safety, active compounds, predicting the targets, and analyzing the potential ingredient 

target-disease networks.  

A unique system pharmacology platform of Chinese herbal medicines named Traditional 

Chinese medicine systems pharmacology (TCMSP) was developed for accelerating drug 

discovery from herbal medicines (Ru et al., 2014). This database covers a large-scale structural 

data integration with experimentally validated information for all registered herbs in Chinese 

pharmacopoeia, active compound screening with key ADME-related properties from diverse 

sources, compound-target and target-disease network construction with applied TCM theory, as 

well as mechanisms of action and discovery of new drugs. Wang et al. systemically reported the 

pharmacological effects and mechanisms of Jingyin granule containing multiple herbs for 

treating respiratory system diseases using computational approaches (Wang et al., 2021a). Firstly, 

the ingredients in Jingyin granule were assessed using TCMSP and Traditional Chinese medicine 

integrated database (TCMID). These databases were used to search for the identified herbal 

ingredients with ADME properties, oral bioavailability (OB), and drug likeness (DL). A total of 

168 selected druggable ingredients identified in Jingyin granule were screened in TCMSP 

database with the criteria of OB ≥ 30% and DL ≥ 0.18. Subsequently, 865 potential therapeutic 

targets of ingredients were identified using SwissTargetPrediction database, and for possible 

targets of COVID-19, Online Mendelian Inheritance in Man (OMIM), DisGeNET, and 

GeneCards databases were implemented and identified 88 interacting genes as potential 

therapeutic targets of Jingyin granule to COVID-19. As a result of using these computational 

approaches, Jingyin granule could directly target the ACE gene, and ACE protein shared similar 

domain with ACE2, which had been identified as one of the most important targets for SARS-

CoV-2 entry (Wang et al., 2021a). Gene Ontology (GO) enrichment analysis and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway analysis were further investigated for 

these relevant target genes with similar functions using an R package clusterProfiler (Yu et al., 

2012). The results of GO and KEGG analysis suggested Jingyin granule could regulate 

immunoreaction as Flos lonicera and Licorice demonstrated anti-inflammatory activities (Wang 

et al., 2021a).  

Another example of system pharmacology was included in the study of TCM 

Shenfuhuang Formula (SFHF) in treatment for septic syndrome of COVID-19 (Liu et al., 2020). 

Data mining was performed and collected 231 ingredients from SFHF, including 92 ingredients 

of Rheum palmatum L. (Da Huang), 74 compounds of Panax ginseng C.A.Mey (Hong Shen), and 

65 compounds of Aconitum carmichaeli Debeaux (Fu Zi) from TCM pharmacology analysis 

databases, TCMSP and ETCM. Suitable drug candidates were selected when they fulfilled active 

screening criteria including oral bioavailability (OB) ≥ 30%, Caco-2 permeability (Caco-2) > 

−0.4, drug-likeness (DL) ≥ 0.18, and half-life (HL) ≥ 4. Only 49 potential SFHF compounds 

were selected. Weighted ensemble similarity (WES) approach was also utilized to obtain 

comprehensive drug target information of SFHF. The results of 64 identified targets were 

predicted for the 49 potential drug compounds. In compound-target analysis network, 

compounds with most targets (sitosterol, emodin, chrysophanol, and deltoin) as well as proteins 
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(GSK3β, ESR1, PPARG, PTGS2, AKR1B10, and MAPK14) were determined (Liu et al., 2020). 

SFHF was further analyzed in PharmGKB, Drugbank, and TTD databases for a target-disease 

network, and the results suggesting 46 targets were directly involved with immune system as 

well as nine potential targets on inflammatory disease. KEGG and DAVID databases were 

subsequently connected potential targets and related signaling pathways. These signaling 

pathways, such as Toll-like receptor, MAPK, JAK/STAT, PPAR, VEGF, NOD-like receptor and 

NF-kappa B have a strong relationship with sepsis, infection immunity, inflammatory response, 

coagulation function, organ damage, immune disorders and other diseases. Furthermore, 

synergistic effects of three herbal compounds in SFHF were constructed, and the targets of this 

TCM formula were related with the calcium, MAPK, T cell receptor, and PI3K-AKT signaling 

pathways. These are main pathological pathways for sepsis. There are more upcoming studies on 

TCM formulas with system pharmacology approaches and MOA analysis for COVID-19 in the 

future. 

Discussion  

COVID-19 pandemic has globally brought researchers to conduct extensive studies in 

order to comprehend pathological diseases, viral components of protein structure, and viral-host 

interactome. The current search for potential antiviral inhibitors, such as vaccines seems to be 

massively time-consuming as well as conventional drugs with undesirable effects in a long term. 

Hence, the search for accelerated methods, safe, and effective antiviral drugs is required. 

Computer-aided drug discovery (CADD) approaches play a significant role in simulating drug-

target interactions, analyzing potential drug targets, and accurately predicting hit compounds by 

using bioinformatics databases, docking tools, software, and other computational methods for the 

optimization of drug design. In the early stage of drug discovery, CADD can save time, financial 

investment, and economical resources spending on wet lab, and prove chemical safety profile of 

natural ingredients in TCM. An effective CADD approach was previously utilized to study 

modern sciences of complex multi-target diseases and mechanisms using TCM formula and/or 

natural products derived from TCM (Yang, 2013). Moreover, a recent study on CADD, 

publication resources, and other computational approaches was implemented to discover novel 

drug candidates against COVID-19 (Muratov et al., 2021). We truly inspired by the concept of 

these two studies, so we focus on small molecule drugs derived from natural products and 

Traditional Chinese Medicine (TCM) in treatment of COVID-19 using CADD approaches.  

In this review, there are more studies mentioning on databases and research resources, 

docking tools, and MD simulation software that aid TCM drug discovery against COVID-19. For 

instances, the identification of natural hit compounds named Gracillin and Proanthocyanidins 

from traditional medicinal plants were virtually screened using AutoDock Vina and visualized by 

Discovery Studio Visualizer, and both exhibited the highest binding affinity of 9.2 kcal/mol to 

3CL
pro

 (PDB ID: 6WNP) (Khanh and Hoa, 2021). Elekofehinti et al. reported post-docking 

analysis by MM/GBSA of the natural hit compound named STOCK1N-98687 from natural 

products library and confirmed binding stability of the ligand and 3CL
pro

 complex (Elekofehinti 

et al., 2021). STOCK1N-98687 has high GLIDE docking score against SARS-CoV-2 3CL
pro

, 

induced-fit docking score, and satisfactory calculated binding free energy score with good 
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predicted inhibitory prowess (pIC50) compared to the experimental drug lopinavir. 50 ns MD 

simulation was performed using GROMACS software and revealed high stability with low 

fluctuation of the complex suggesting STOCK1N-98687 as the potential 3CL
pro

 inhibitor. Pie 

charts are illustrated in Figure 2, 4, 5, and the most popular database, docking tool, and MD 

simulation software on TCM research articles against COVID-19 are TCMSP, AutoDock Vina, 

and GROMACS respectively. However, this can be further indicated that databases, tools or MD 

software conducting on TCM research articles against COVID-19 are low in number of 

publications. Many readers could take this opportunity to exploit and develop their own TCM-

related research field against COVID-19 from our review. 

We have found more in vitro examples of active ingredients on TCM using structure-

based approaches while ligand-based approaches will be summarized using in silico methods. 

QSAR classification modeling was constructed using RF machine learning techniques in order to 

propose five marine natural products (Reaxys ID: 7450892, 19384758, 26845562, 10714788, 

and 10720065) as top SARS-CoV-2 M
pro

 inhibitors (Gaudêncio and Pereira, 2020). Deep neural 

networks were employed for generating de novo design of small molecules and compared 33 

NCEs with TCM phytochemicals in order to determine which compounds are able to inhibit 

SARS-CoV-2 3CL
pro

 (Bung et al., 2021). In this study, aurantiamide from TCM herb 

Baphicacanthus cusia possessed antiviral properties, and this method can accelerate drug 

discovery process. For knowledge mining tools, the use of COVID-19 knowledge graph can be 

applied in TCM prescriptions for diagnostic and medical treatment (Yan et al., 2020). The 

applications of systems pharmacology focus mainly on a biological system including active 

ADME screening model, target prediction, and compound target-disease network analysis. For 

network pharmacology, the integration across multiple drug-target and ingredient-disease 

pathways totally shifts the paradigm of drug discovery from one gene, target, and pathway to 

complex network theory, biological systems, and multiple target mechanisms. Many TCM 

formula have included both systems pharmacology and network pharmacology in their research 

articles for better understanding of their multiple mechanisms and targets. Different CADD 

approaches that support TCM research on COVID-19 have been reviewed in this paper. After 

determining hit selection, every study requires further experimental validations in order to be 

readily tested in animal and clinical studies.  

Conclusion 

Overall, different approaches supporting TCM research on COVID-19 including research 

databases, docking tools, and MD simulation software have been totally summarized. The 

application of databases and research resources on TCM ingredients for COVID-19 listed in this 

paper facilitates a wide range of audience to employ CADD tools to datasets and biological 

targets regarding to SARS-CoV-2 drug discovery. Computational investigation including 

databases, molecular docking tools and MD simulation software on natural compounds and TCM 

herbs have been applied and predicted as potential targets for COVID-19. The most commonly 

used database, molecular docking tool, and MD simulation software include TCMSP, AutoDock 

Vina, and GROMACS respectively. These are subsequently illustrated in Figure 2, 4, and 5 as 

pie charts. MD simulation software is implemented for MM/PBSA and MM/GBSA methods for 
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binding free energy calculation. Several examples of active components derived from TCM by 

structure-based and ligand-based approaches were also mentioned, which were conducted in 

vitro and in silico respectively. Active components derived from natural products or TCM for 

structure-based approaches are summarized against key COVID-19 targets including ACE2, 

3CL
pro

, and PL
pro

. Only few studies were found in active ingredients of natural products derived 

from TCM for ligand-based approaches. COVID-19 knowledge graph, an example of knowledge 

mining tool, is used to analyze complex TCM relationships between TCM herbal properties and 

therapeutics on COVID-19 infected patients. System/network pharmacology databases were used 

to identify the multitarget mechanisms of COVID-19 due to the complex of chemical ingredients, 

targets, and pathological mechanisms in multiple TCM herbs. In the future, computational 

approaches, tools, and resources are necessary for the upcoming unknown diseases. We 

recommend readers to exploit our information for the development of future drug discovery in 

TCM.  
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Figure 1 General Procedure of Computational Approaches.  

 

 

Figure 2 Databases Supporting TCM Research against COVID-19.  
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Figure 3 Structure of SARS-CoV-2. (A) Schematic representation of the structure of SARS-CoV-2. It has four 

structural proteins, S (spike), E (envelope), M (membrane), and N (nucleocapsid) proteins; the N protein holds the 

single strand, positive-sense RNA genome, and the S, E, and M proteins together create the viral envelope. (B) 

SARS-CoV-2 genomic structure. 

 

 

Figure 4 Docking Tools Supporting TCM Research against COVID-19.  
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Figure 5 MD Simulation Software Supporting TCM Research against COVID-19.  
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Table 1 Docking tools that support research of TCM against COVID-19 

Docking tools Website Description  License References 

AutoDock https://autodock.scripps.edu/  Automated docking tools for 

predicting the binding 

between substrates (ligand) 

and a known 3D structural 

receptor (protein) 

Free (Abd El-

Mageed et al., 

2021; Gentile et 

al., 2020; Huang 

et al., 2021; Li 

et al., 2021a; 

Mazzini et al., 

2020; Morris et 

al., 2008; Mu et 

al., 2021; Niu et 

al., 2021; 

Prasanth et al., 

2021; Saidijam 

et al., 2021; 

Sivaraman and 

Pradeep, 2020; 

Vardhan and 

Sahoo, 2021; 

Wang et al., 

2021c; Xia et 

al., 2020; Xiong 

et al., 2020; Yu 

et al., 2020; 

Zhang et al., 

2020; Zhao et 

al., 2020b) 

AutoDock Vina https://vina.scripps.edu/  An open-source program with 

more accurate binding mode 

of predictions compared to 

AutoDock 

Free (Alhadrami et 

al., 2021; Arora 

et al., 2020; 

Beirami et al.; 

Bharadwaj et 

al., 2020; Bung 

et al., 2021; Gao 

et al., 2020; 

Gentile et al., 

2020; Gu et al., 

2021; Guo et al., 

2020; Hasan et 

al., 2022; 

Huynh et al., 

2020; Khuntia 

et al., 2021; Li 

et al., 2021a; 

Liao et al., 

2021; Liu et al., 

2021a; Mazzini 

et al., 2020; Mu 

et al., 2021; 

Murugan et al., 

2021; Peng et 

al., 2020; 

                  



36 

 

Prasanth et al., 

2021; Rajpoot et 

al., 2021; Ram 

et al., 2021; 

Ruan et al., 

2020; Shree et 

al., 2022; 

Simayi et al., 

2022; Singh et 

al., 2020; Sinha 

et al., 2021a; 

Sinha et al., 

2020; Trott and 

Olson, 2010; 

Vardhan and 

Sahoo, 2021; 

Wang et al., 

2021d; Wei et 

al., 2020; Wu et 

al., 2021a; Wu 

et al., 2021b; 

Xia et al., 2020; 

Xie et al., 

2021b; Xu et al., 

2021b; Ye et al., 

2020; Ye et al., 

2021; Yu and 

Li, 2022; 

Zackria et al., 

2021; Zhang et 

al., 2020; Zhao 

et al., 2020b; 

Zhao et al., 

2021c; Zheng et 

al., 2020) 

COVID-19 

Docking Server 

https://ncov.schanglab.org.cn/  A web server for predicting 

the interaction between small 

molecules, peptides and 

antibodies and COVID-19 

protein targets 

Free (Cai et al., 2021; 

Chen et al., 

2020; Kong et 

al., 2020b) 

GLIDE https://www.schrodinger.com/produc

ts/glide  

A ligand-receptor docking 

program from HTVS to SP to 

XP at high accuracy levels 

Commerci

al 

(Chen et al., 

2021b; Chikhale 

et al., 2020a; 

Chikhale et al., 

2020b; Dutta et 

al., 2021; 

Emirik, 2020; 

Fathy et al., 

2020; Kumar et 

al., 2020; Li et 

al., 2021b; Liao 

et al., 2021; Liu 

et al., 2021b; 

Mahmud et al., 

2021; Mei et al., 

2021; Rajan et 
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al., 2020; Rakib 

et al., 2020; 

Repasky et al., 

2007; Selvaraj 

et al., 2021a; 

Selvaraj et al., 

2021b; Shah et 

al., 2021; 

Shawky et al., 

2020; Shree et 

al., 2022; Sinha 

et al., 2021b; 

Zhao et al., 

2021a) 

GOLD https://www.ccdc.cam.ac.uk/solution

s/csd-discovery/Components/Gold/  

A protein-ligand docking 

software with optimized 

scoring functions for drug 

discovery 

Commerci

al 

(Nawrot-Hadzik 

et al., 2021; 

Tejera et al., 

2022; Verdonk 

et al., 2003) 

MOE https://www.chemcomp.com/Product

s.htm  

A comprehensive package for 

visualizing, modeling, and 

simulating computer aided 

molecular design of small 

molecules, peptides, and 

biologics 

Commerci

al 

(Chikhale et al., 

2020a; Elebeedy 

et al., 2021; Han 

et al., 2020; 

Liao et al., 

2021; Rauf et 

al., 2021; 

Saidijam et al., 

2021; Tahir Ul 

Qamar et al., 

2020; Vilar et 

al., 2008; Wang 

et al., 2020; Wei 

et al., 2020; Yu 

et al., 2021; 

Zaki et al., 

2021)  

SwissDock http://www.swissdock.ch/  A web server for predicting 

the interaction between a 

target protein and small 

molecule 

Free (Arora et al., 

2020; Chen et 

al., 2021a; 

Grosdidier et 

al., 2011; Kong 

et al., 2020a; 

Lung et al., 

2020; Rajpoot et 

al., 2021; Zhang 

et al., 2021b) 
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Table 2 MD simulation software that support research of TCM against COVID-19 

Docking tools Website Description  License Reference 

AMBER https://ambermd.org/  A package of biomolecular 

simulation software including 

MM force fields and MD 

simulations 

Free (Case et al., 2005; Chikhale et al., 

2020a; Chikhale et al., 2020b; Dutta 

et al., 2021; Gentile et al., 2020; 

Gopinath et al., 2020; Liao et al., 

2021; Liu et al., 2021a; Murugan et 

al., 2021; Shree et al., 2022; Wang et 

al., 2021b; Wang et al., 2020; Wei et 

al., 2020; Ye et al., 2020) 

YASARA http://yasara.org/  A molecular-graphics, 

modeling, and simulation 

program for visualizing 

bioinformatics 

Proprietary (Dutta et al., 2021; Gentile et al., 

2020; Land and Humble, 2018; 

Mahmud et al., 2021; Patel et al., 

2021; Shree et al., 2022; Swargiary et 

al., 2020; Xinqiang et al., 2020) 

GROMACS http://www.gromacs.

org/  

An MD package for complex 

bonded interactions including 

proteins, lipids, and nucleic 

acids, as well as polymers 

Free (Abraham et al., 2015; Chen et al., 

2021a; Elekofehinti et al., 2021; 

Khuntia et al., 2021; Mazzini et al., 

2020; Prasanth et al., 2021; Rajpoot 

et al., 2021; Selvaraj et al., 2021b; 

Sinha et al., 2020; ul Qamar et al., 

2020; Vardhan and Sahoo, 2021; Wu 

et al., 2021b; Xie et al., 2021a; Xie et 

al., 2021b; Ye et al., 2020; Zackria et 

al., 2021; Zaki et al., 2021; Zhao et 

al., 2021c) 

VMD http://www.ks.uiuc.e

du/Research/vmd/  

A molecular visualization 

program supporting large 

biomolecular systems using 3-

D graphics and built-in 

scripting 

Proprietary 

and free 

(Abd El-Mageed et al., 2021; 

Alhadrami et al., 2021; Humphrey et 

al., 1996; Khuntia et al., 2021; 

Vardhan and Sahoo, 2021; Zaki et 

al., 2021) 

NAMD http://www.ks.uiuc.e

du/Research/namd/  

A parallel MD code designed 

for high-performance 

simulation of large 

biomolecular systems using 

the setup and trajectory 

analysis of VMD program 

Proprietary 

and free 

(Abd El-Mageed et al., 2021; 

Alhadrami et al., 2021; Huynh et al., 

2020; Phillips et al., 2005) 

CHARMM https://www.charmm.

org/  

A biomolecular simulation 

program with comprehensive 

set of energy functions, 

various enhanced sampling 

approaches as well as multi-

scale techniques  

Proprietary 

and 

commercial 

(Abd El-Mageed et al., 2021; 

Alhadrami et al., 2021; Arora et al., 

2020; Brooks et al., 2009; Chen et 

al., 2021a; Huynh et al., 2020; 

Khuntia et al., 2021; Mazzini et al., 

2020; Ram et al., 2021; Sinha et al., 

2020; Zaki et al., 2021; Zhao et al., 

2021c) 

Desmond https://www.deshawr

esearch.com/resource

s.html  

A high-speed MD software 

suite on biological system 

with high performance and 

accuracy on NVIDIA GPUs 

Proprietary 

and 

commercial 

(Abel et al., 2020; Alhadrami et al., 

2021; Badraoui et al., 2022; 

Bharadwaj et al., 2020; Emirik, 2020; 

Gopinath et al., 2020; Hasan et al., 

2022; Kumar et al., 2020; Li et al., 

2021b; Patel et al., 2021; Ram et al., 

2021; Shah et al., 2021; Shree et al., 

2022; Şimşek et al., 2021; Singh et 
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al., 2020; Vetrivel et al., 2021) 

Tinker https://dasher.wustl.e

du/tinker/  

A molecular modeling 

program for MM and MD 

including several commonly 

used parameters for molecular 

design 

Proprietary (Mazzini et al., 2020; Rackers et al., 

2018) 

 

 

Table 3 Examples of active compounds isolated from natural extracts with ACE2 (S protein) inhibitory activity  

Source  Family Hits  Class of compounds Bioactivities References 

Camellia 

sinensis 

(Linnaeus) 

Kuntze 

Theaceae Epigallocatechin 

gallate (EGCG) 

Catechin IC50 = 2.47 

µg/mL 

(Henss et al., 

2021) 

Caragana sinica 
(Buc'hoz) 

Rehder 

Fabaceae Kobophenol A Stilbenoid IC50 = 1.81 µM 

EC50 = 71.6 

μM 

(Gangadevi et 

al., 2021) 

Glycyrrhiza 

glabra Linnaeus 

Fabaceae Glycyrrhizic 

acid 

Triterpenes IC50 = 22 µM (Yu et al., 2021) 

Polygonum 

cuspidatum 

(Houttuyn) 

Ronse Decraene 

Polygonaceae Emodin 8-O-β-

D-glucoside 

Hydroxyanthraquinone 

glycoside 

IC50 = 22.50 
µmol/L 

(Chen et al., 

2021b) 

Rheum 

palmatum 

Linnaeus 

Polygonaceae Rhein Anthraquinone IC50 = 18.33 
µmol/L 

Salvia 

miltiorrhiza 

Bunge 

Lamiaceae Tanshinone IIA,  Diterpene quinone IC50 = 4.08 
μM  

(Elebeedy et 

al., 2021) 
Carnosic acid Phenolic acids IC50 = 15.37 

μM  

Rosmarinic acid Diterpene IC50 = 25.47 
μM  

Salvianolic acid 

B 
Polyphenols IC50 = 

58.29 μM  

EC50 = 

6.22 μM 

(Elebeedy et 

al., 2021) (Hu et 

al., 2021b) 

Salvianolic acid 

C 
EC50 = 

10.14 μM 
(Hu et al., 

2021b) 

Salvianolic acid 

A 

EC50 = 

11.31 μM 
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Table 4 Examples of active compounds isolated from natural extracts with 3CL
pro

 (M 
pro

) inhibitory activity  

Source  Family Hits  Class of 

compounds 

Bioactivities References 

Actinomycetes 

QFPD 

Actinomycetaceae Leupeptin Tripeptide IC50 = 127.2 μM 

EC50 = 42.34 μM 

(Fu et al., 

2021) 

Aloe vera 

(Linnaeus) 

Burman 

Asphodelaceae Kaempferol Flavonoid 93% inhibition at 

62.5 μM 

88% inhibition at 

125 μM 

(Khan et al., 

2021) 

Ampelopsis 

japonica 

(Thunberg) 

Makino 

Vitaceae Myricetin Flavonoid IC50 = 2.86 µM (Xiao et al., 

2021) IC50 = 3.684 μM 

Anacardium 

occidentale 

Linnaeus 

Anacardiaceae Anacardic acid Phenolic 

acid 

IC50 = 2.07 µM (Chen et al., 

2021c) 

Camellia 

sinensis 

(Linnaeus) 

Kuntze 

Theaceae Epigallocatechin 

gallate (EGCG) 

Catechin IC50 = 0.874 μM (Du et al., 

2021) 

Cannabis 

sativa 

Linnaeus 

Cannabaceae Cannabidiol Cannabinoid IC50 = 7.91 µM (Raj et al., 

2021) 
Δ

9
 -

tetrahydrocannabinol 

IC50 = 10.25 µM 

Cirsium 

japonicum de 

Candolle 

Asteraceae Pectolinarin Flavonoid IC50 = 37.78 µM (Jo et al., 

2020) 

Ginkgo biloba 

Linnaeus 

Ginkgoaceae Ginkgolic acid Phenolic 

acid 

IC50 = 1.79 µM (Chen et al., 

2021c) 

Linum 

usitatissimum 

Linnaeus 

Linaceae Herbacetin Flavonoid IC50 = 33.17 µM (Liu et al., 

2021b) 

Poria cocos 

(F.A. Wolf) 

Ryvarden & 

Gilbertson 

Polyporaceae Pachymic acid Triterpenoid IC50 = 18.607 

µmol/L 

(Wu et al., 

2021b) 

Rhus 

succedanea 

(Linnaeus) 

Kuntze 

Anacardiaceae Rhoifolin Flavonoid IC50 = 27.45 µM (Liu et al., 

2021b) 

Scutellaria 

baicalensis 

Georgi 

Lamiaceae Baicalin Flavone 

glycoside 

IC50 = 6.41 μM (Su et al., 

2020) 

Baicalein Flavone IC50 = 0.94 µM 

IC50 = 0.39 µM 

EC50 = 2.9 µM 

(Liu et al., 

2021b) 

Scrutellarein Flavonoid IC50 = 5.8 µM 
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Table 5 Examples of active compounds isolated from natural extracts with PL
pro

 inhibitory activity  

Source  Family Hits  Class of 

compounds 

Bioactivities  Reference 

Carpobrotus 

edulis 
(Linnaeus) 

Brown 

Aizoaceae Rutin Flavonol 

glycoside 

38% inhibition at 

100 μM  

(Pitsillou et al., 

2021) 

Garcinia 

lateriflora 

Blume 

Clusiaceae Morelloflavone  IC50 = 36.4 μM (Li et al., 

2022b) 

Ginkgo biloba 

Linnaeus 

Ginkgoaceae Amentoflavone Biflavones IC50 = 13.0 μM 

Ginkgetin IC50 = 29.8 μM 

Isoginkgetin IC50 = 31.2 μM 

Sciadopitysin IC50 = 34.8 μM 

Hibiscus 

sabdariffa 

Linnaeus 

Malvaceae Cyanidin-3-O-

glucoside 

Anthocyanin 20% inhibition at 

100 μM 

(Pitsillou et al., 

2021) 

Hypericum 

perforatum 

Linnaeus 

Hypericaceae Hypericin Naphtodianthrone 97% inhibition at 

100 μM 

Lonicera 

japonica 

Thunberg 

Caprifoliaceae 4'-O-

Methylochnaflavone 

 IC50 = 22.8 μM (Li et al., 

2022b) 

Platycladus 

orientalis 

(Linnaeus) 

Franco 

Cupressaceae Hinokiflavone  IC50 = 9.5 μM 

 Cryptomerin B IC50 = 26.3 μM 

Podocarpus 

nakaii Hayata 

Podocarpaceae Podocarpusglavone  IC50 = 43.2 μM 

Salvia 

miltiorrhiza 

Bunge 

Lamiaceae Cryptotanshinone Diterpenoid IC50 = 5.63 

μmol/L 

(Zhao et al., 

2021b) 

 Tanshinone I IC50 = 2.21 

μmol/L 
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Abbreviations 

TCM: Traditional Chinese medicine 

DAAs: Direct-acting antiviral agents 

CADD: Computer-aided drug design 

AI: Artificial Intelligence 

MD: Molecular dynamic 

ML: Machine learning 

MOA: Mechanism of action 

ADMET: Absorption, distribution, metabolism, excretion, and toxicity 

QSAR: Quantitative structure–activity relationship 

DEGs: Differentially expressed genes 

HTVS: High Throughput virtual screening 

SP: Standard Precision 

XP: Extra Precision 

SBDD: Structure-based drug discovery 

MM/PBSA: Molecular Mechanics Poisson-Boltzmann Surface area 

MM/GBSA: Molecular Mechanics Generalized Born Surface area 

QM: Quantum mechanics 

DFT: Density Functional Theory 

GO: Gene Ontology 

KEGG: Kyoto Encyclopedia of Genes and Genomes 

SFJDC: Shufeng Jiedu Capsule 

PPI: Protein-protein interaction 

ANNs: Artificial Neural Networks 

MXSGD: Maxing Shigan Decoction 

TJQWG: Toujie Quwen Granules 

HSBDF: Huashi Baidu Formula 

LHQWC: Lianhua Qingwen Capsule 

SLBZS: Shenling Baizhu San 

QFPDT: Qingfei Paidu Tang 

ZQF: Zhongqi Fangzi 

GZTCJ: Guizhi Tang Chongji 

SFZSY: Shenfu Zhusheye 

HSYFF: Hanshiyufen Fang 

XCT: Xiangchuan Tang 

SQRSS: Shunqi Renshen San 

CCJ: Chaichen Jian  

XFBDF: Xuanfei Baidu Fang 

SFHF: Shenfuhuang Formula  

SPR: Surface plasmon resonance 

HPLC: High-performance liquid chromatography 

HRMS: High-resolution mass spectrometry 

FRET: Fluorescence resonance energy transfer 

Generative Topographic Mapping (GTM) 

DL: Deep learning 

NCEs: New chemical entities 

CNNs: Convolutional Neural Networks 

KG: Knowledge graph 

OB: Oral bioavailability 

DL: Drug likeness 
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